Pembrolizumab in CTCL

Youn H Kim, MD

Multidisciplinary Cutaneous Lymphoma Group Stanford Cancer Institute Stanford University School of Medicine

Cancer Immunotherapy

Normal T cell biology - activation

Courtesy of M Khodadoust

Normal T cell biology - inhibition

T cell

Tumor cell or APC

Cutaneous T cell lymphomas – PD1 / PD-L1

Activity of PD-1 inhibitors in CTCL?

Nivolumab for T cell lymphoma

Tumor	OR, No. (%)	CR, No. (%)	PR, No. (%)	SD, No. (%)	Median PFS, Weeks (95% CI)
B-cell lymphoma (n = 31)	8 (26)	3 (10)	5 (16)	16 (52)	23 (7 to 44)
DLBCL (n = 11)	4 (36)	2 (18)	2 (18)	3 (27)	7 (6 to 29)
FL (n = 10)	4 (40)	1 (10)	3 (30)	6 (60)	NR (7 to NR)
Other B-cell lymphoma (n = 10)	0	0	0	7 (70)	11 (3 to 39)
T-cell lymphoma (n = 23)	4 (17)	0	4 (17)	10 (43)	10 (7 to 33)
MF (n = 13)	2 (15)	0	2 (15)	9 (69)	10 (7 to 35)
PTCL (n = 5)	2 (40)	0	2 (40)	0	14 (3 to NR)
Other CTCL (n = 3)	0	0	0	0	7 (6 to NR)
Other non-CTCL (n = 2)	0	0	0	1 (50)	10 (2 to 18)
Multiple myeloma (n = 27)	1 (4)	1 (4)*	0	17 (63)	10 (5 to 15)

Lesokhin et al. J Clin Oncol 2016.

- Low activity in "CTCL" with nivolumab (2 of 13 "MF" with PR), trial had multiple cohorts, lack of specifics in CTCL cohort, unclear if MF/SS-specific assessment tools and response criteria were utilized
- 2 pts with PR had relevant genomic alterations

Cancer Immunotherapy Trials Network Protocol # CITN-10 A Phase 2 Study of Pembrolizumab for the Treatment of Relapsed/Refractory Mycosis Fungoides and Sézary Syndrome

Principal Investigator: Y Kim, H Kohrt (Co-PI) Lead Sub-I/Correlative Lead: M Khodadoust

Z Rahbar, J Kim (pathology), S Li (biostatistician) Stanford University SOM

Coordinating Center (CITN): M Cheever

R Shine (project manager); Steven Fling (laboratory lead) CITN, Fred Hutchinson Cancer Research Center

Investigative sites/site PI:

A Rook (U Penn), F Foss (Yale), PG Porcu (OSU), A Shustov (SCCA), A Moskowitz/S Horwitz (MSKCC), L Sokol (Moffitt), S Shanbhag (Johns Hopkins)

Correlative Studies: S Fling, Y Yang, J Yearley, P Balsubrahmanyam, H Maecker

NCI Collaboration: E Sharon Funding Support: National Cancer Institute Merck

Cancer Immunotherapy Trials Network (CITN)

Phase II trial design

Design

- Multicenter, single-arm trial, coordinated centrally by CITN including biorepository
- 24 patients with previously treated MF or SS (Simon stage

Eligibility

- Stage IB-IVB MF or SS
- Failed at least 1 systemic therapy

Schedule

- Pembrolizumab at 2 mg/kg every 3 weeks for up to 2 years
- mSWAT with each cycle; global assessment q 12 wks (4 cycles)

Objectives

- Primary endpoint Overall Response Rate (by global consensus criteria)
- Secondary endpoints Safety, TTR, DOR, PFS
- Extensive translational correlative studies planned

Clinical response

Follow up time (wks) - median(range): 40(9 - 60)

TTR (wks): 11(8-41) PFS: Median not reached DOR: Median not reached; 89% ongoing 1-year PFS: 69%

Overall response rate: 38%

Overall Response Rate: 38% (9 patients)

Deep and durable responses with pembrolizumab

With complete translational studies

44 yo AA F with Sézary syndrome, stage IVA2, global PR (h/o phototherapy, romidepsin) CD8+ T cells

Immune

Gr 2 erythroderma SU # 110-41-004

C13D1

Global PR C6 => CR (Skin/PR C6D1, Blood/CR C5D1, LN/CR C12D1) C2D1: skin/blood worsened with immune mediated flare

Baseline

63M with MF, stage IIB, LCT+, global PR

(h/o PUVA, bexarotene, RT, ECP, IFN, vorinostat, romidepsin, gemcitabine, pralatrexate)

Upenn # 110-75-002

Baseline

C14

Toxicity/tolerability

Recurrent or Gr 3/4 related adverse events (excluding skin)

	Grade 1/2		Grade 3/4		
Events	Patients	%	Patients	%	
Anemia	1	4%	2	8%	
Diarrhea	2	8%	1	4%	
Infusion-related reaction	2	8%	0	0	
Leukopenia	2	8%	0	0	
Transaminitis	1	4%	1	4%	
Duodenitis	0	0	1	4%	
Hyperuricemia	0	0	1	4%	

- Safety overall was excellent with expected toxicities
- Two related SAEs
 - Duodenitis (steroid-refractory)
 - Pneumonitis (steroid-responsive)

- 8 patients experienced a skin-flare reaction
 - All eight had Sézary Syndrome.
 - Did not result in discontinuation
 - Did not correlate with either response/progression

Correlative Studies – Extensive Biomarker Analysis

Immunohistochemistry

- PD-1/PD-L1 expression is a key biomarker candidate
- Expression of PD-L1 did not correlate with response to pembrolizumab
- Additional markers were also assessed, no correlation with clinical response
 - ✓ CD4
 - ✓ CD8
 - ✓ Foxp3
 - ✓ CD163
 - ✓ PD1
 - ✓ PDL2

High dimensional analysis - CyTOF

Immunophenotypic discrimination of normal CD4 cells and Sezary cells can be challenging (CD4+/CD26-) esp in low-intermediate SC burden

CyTOF – simultaneous staining of 33 abs

Discriminates normal and malignant T cells - even without CD7 or CD26

More precise characterization of malignant cells

Pretreatment PD1 expression predicts skin flare

CyTOF identified high PD1 expression on Sezary cells as predictor for skin flare reaction

Luminex cytokine profiling associated skin flares with post-treatment increase in IL-12 levels, suggesting Th1 driven reaction

Extensive Biomarker Analysis, *near complete*

Anti-PD-1 mab, pembrolizumab, in MF/SS *Summary*

- Objective clinical responses are observed in 9/24 (38% ORR)
 - Observed in both MF (IIB) and SS (IVA)
 - Responses in heavily treated pts (5 of 9 responders \geq 4 prior systemic therapies)
 - Responses appear to be durable
 - 8 of 9 responses ongoing
- Well-tolerated, anticipated and toxicity was manageable
 - Skin flare seen in Sezary patients with high PD1 expression
- Biomarker/translational data pending, help in predicting response and tumor/immune escape mechanisms, and esp to understand who have early progression
- Follow up trial: CITN-13 pembrolizumab with interferon-gamma

NCI Protocol: CITN-13

A Phase II Trial of MK-3475 (pembrolizumab) and Interferon Gamma 1-b Combination Immunotherapy in Patients with Previously Treated MF/SS

Principal Investigator: M Khodadoust, Y Kim Stanford University SOM

Coordinating Center (CITN): M Cheever

A Davis (project manager); Steven Fling (laboratory lead) CITN, Fred Hutchinson Cancer Research Center

Investigative sites/site PI:

A Rook (U Penn), F Foss (Yale), A Shustov (SCCA), PG Porcu (Jefferson) A Moskowitz/S Horwitz (MSKCC), D Fisher (DFCI), N Mehta-Shah (Wash U)

Correlative Studies: S Fling

NCI Collaboration: E Sharon

Funding Support: National Cancer Institute Merck, Horizon

CITN13 – Treatment Schema

Interferon-gamma: 50 mcg/m2 3x per week; with 1 week lead-in Dose escalation to 75 mcg/m2 and 100 mcg/m2 permitted at boost periods if not in CR

Pembrolizumab: 200 mg flat dose every 3 weeks

Role of PD-1 signaling in T cell lymphomas

doi:10.1038/nature24649

PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis

Tim Wartewig^{1,2}, Zsuzsanna Kurgyis^{1,2}, Selina Keppler^{1,2}, Konstanze Pechloff^{1,2,3}, Erik Hameister^{1,2}, Rupert Öllinger^{2,4}, Roman Maresch^{2,4}, Thorsten Buch⁵, Katja Steiger⁶, Christof Winter^{1,2,3}, Roland Rad^{2,3,4} & Jürgen Ruland^{1,2,3,7}

PD-1 enhances levels of tumor suppressor PTEN and attenuates signaling by AKT and PKC.

Reportedly PD-1 copy number loss is frequent in T cell lymphoma and may predispose to T cell lymphomagenesis

PD-1 blockade may have potential to activate T cell lymphomas

PD-1 inhibitor possibly promoting CTCL

- 62 yo man with **metastatic melanoma** to lung and brain
- Receives ipilimumab x 4: progressive disease of melanoma
- Receives pembrolizumab: near complete response of melanoma

But ~ 11 months after starting pembrolizumab for met melanoma, begins to develop skin lesions

Biopsy shows a CD8+/TCRβ+ epidermotropic cytotoxic T cell lymphoma

Did anti-PD-1 therapy induce T cell lymphoma?

More to learn about PD-1/PD-L1 inhibition in TCL

Acknowledgements

Stanford University: Michael Khodadoust Holbrook Kohrt Jinah Kim Shufeng Li Ziba Rahbar Julia Dai Ash Alizadeh Priyanka Subrahmanyam Holden Maecker

Memorial Sloan Kettering:

Alison Moskowitz Steven Horwitz

Moffitt Cancer Center:

Lubomir Sokol

NCI Cancer Therapy Evaluation Program: Elad Sharon MoCha group

<u>Merck:</u> Jennifer Yearley

Funding Support: National Cancer Institute Merck

Patients and their families

<u>CITN / Fred Hutchinson:</u> Mac Cheever

Richard Shine Steven Fling Yi Yang

Penn:

Alain Rook

Ohio State:

Pierluigi Porcu

Yale:

Francine Foss

University of Washington:

Andrei Shustov

Johns Hopkins:

Satish Shanbhag

